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ABSTRACT

A two-dimensional finite-difference code to solve the

BGK-Boltzmann equation has been developed. The so-

lution procedure consists of three steps: (1). Transform-

ing the BGK-Boltzmann equation into two simultaneous

partial differential equations by taking moments of the

distribution function with respect to the molecular ve-

locity u_, with weighting factors 1 and u_. (2). Solving

the transformed equations in the physical space based on

the time-marching technique and the four-stage Runge-
Kutta time integration, for a given discrete-ordinate.

The Roe's second-order upwind difference scheme is used
to discretize the convective terms and the collision terms

are treated as source terms. (3). Using the newly calcu-

lated distribution functions at each point in the physical

space to calculate the macroscopic flow parameters by

the Modified Gaussian quadrature formula. Repeating

Steps 2 and 3, the time-marching procedure stops when

the convergent criteria is reached. A low-density nozzle

flow field has been calculated by this newly developed

code. The BGK Boltzmann solution and the experimen-

tal data show excellent agreement. It demonstrated that

numerical solutions of the BGK-Boltzmann equation are
read)" to be experimentally validated.

INTRODUCTION

Low density nozzles are often used as a propulsive

system for the trajectory control of satellites and other

spacecrafts in orbit. One of the distinct characteristics of

the low-density nozzle flow is that the expanding gas is

highly rarefied with a thick boundary layer near the wall

such that the distinction between the boundary layer and
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the core flow disappears. Thus the fluid dynamics in

a low,tensity nozzle falls into the transitional regime. It
has been well known that the conventional Navier-Stokes

equations fail to predict flow characteristics accurately in

the transitional flow regime [1'2]. Usage of improper con-

tinuum methods will lead to significant erroneous esti-
mates of the nozzle flow characteristicsia]. A rigorous nu-

merical treatment of the flow field within the low-density

nozzle requires the solution of the Boltzmann equation.

The Boltzmann equation is a highly non-linear

integro-differential equation to describe flow characteris-
tics in the molecular level with the molecular distribution

function as the only dependent variable. Direct numeri-

cal solutions of the Boltzmann equation for fluid flows in-
volves the calculation of the molecular distribution func-

tion as well as the collision integral at each velocity point

in a three-dimensional infinite velocity space [4].

Many research efforts have been reported in di-

rectly solving the non-linear Boltzmann equation using

finite-difference methods. The Monte-Carlo-Integration

technique (MCI) [5.s'_ has been exclusively used to eval-

uate the collision integrals. The shortconfing of the

MCI method is the large consumption of computer time,

and the MCI procedure must be executed at each time

step. Without loss of generality, the linearized BGK-

Boltzmann equation has been solved successfully with

large Knudsen number [s'9]. The advantage of solving

the BGK-Boltzmann equation is that it requires much
less computational efforts and computer time, and still

preserves the flow characteristics of the original Boltz-

mann equation, as long as the Knudsen number is rela-

tively large. For engineering applications, the solutions of

the macroscopic parameters are required. These parame-
ters are derived from the molecular distribution function.

The discrete-ordinate method[S'g] is based on the con-

cept that the integration over an infinite velocity space

can be reduced to integration over a finite number of dis-

crete points by selecting a appropriate integration for-

mula. The transformed finite difference equations from

the Boltzmann equation can be quantitized in the veloc-

ity space, and the macroscopic properties can be obtained

though this quantitized velocity space.

The objective of this research is to develop a new
finite-difference method to solve the BGK-Boltzmann

equation for nozzle flows in the transitional flow regime.



Tile newmethodologycombinesthe Discrete-Ordinate
(FDDO) teclmique [91 with a second-order upwind finite-

difference method [1°] and the four-stage Runge-Kutta

time integration scheme. This paper describes the nu-

merical procedure and presents solutions of low-density
nozzle flows.

MATHEMATICAL FORMULATION

A two-dimensional BGK-Boltzmann equation, with-

out external force, is solved in a Cartesian coordinate

system

Of Of Of

O--i+u_U+u_=Ac(fo-f) (1)

where f0 is the Maxwell[an distribution function, Ac is

the collision frequency, and

- - 3Ezp (-2--_) (2)fo (2n'RT)

mnRT
Ac - (3)

P

m is the molecular weight, n is the molecular number

density, u_, uu are the molecular velocity components in

the x- and y- directions, respectively. It is assumed

that the viscosity coefficient p and molecular mean free

path ,_1 are

-- = (4)
#o

16 p
_ = . (5)

o mno(2_RT)½

Tile subscript 0 indicates the reference state, and the

exponent _ depends on the flow media. Equation (1) is
simplified as

Of+u Of Of 16 1 n (RT) ½

(6)

In order to reduce the number of independent variables,

tile BGK Boltzmann equation is integrated with respect

to u:. with weighting factors 1 and u_. Equation (1)
becomes

Og Og Og

O---_+u,o--x+u_-_y = A_(G-g) (7)

Oh Oh Oh

O--[+u,O-_+uv-_y = A_(H-h) (8)

where

/7g=g(x,y,u_:.Uy)= f(x,y.u_.u:..u:)du: (9)

h=h(x,y,u_:,uy)= /+_u_f(x,y.u_.u...u:)du: (10)

LG=G(x,y, ur.uu)= fodu: (11)

/+5H =H(x,y,u,:.u_)= u_f,:.du: (12)

Taking a one-one correspondence transformation in the

velocity space as well as in the physical space

u_ = Vsin0 (13)

uu = Vcos¢ (14)

equations (7) and (8) become

Og Og Og

o-7+ B_ + C-_ = .4_(C - g)

Oh BOb cob
0---_+ -_-_ + -_ = A¢ ( H - h )

where

1

B = -j (t'cosOx_ - Vsin oy_)

1

C= j(t'sin0y,-Vcosox,)

(16)

17)

18)

19)

with Jacob[an J(x, y;¢, q) and coordinate transformation

coefficients x_, x,, y_, y,.

NUMERICAL PROCEDURE

The macroscopic flow parameters can be obtained

through the integration of the distribution function f.

For example, the number density, ,\'(x.y.t) in two-
dimensional cartesian coordinates can be obtained from

the zero-moment equation,

N(x,y,t) =

f( x, y, t, u_:, uy , u_ )du :-du,jdu _
O0 CX_ O_

where (uz, uu,u:) is the molecular velocity vector in the
velocity space.

Substituting equation (9) into equation (20). it be-
comes

N(x,y,t) = g(x,y.t.u_.u,j)du,du,j (21)
--0,2.

[;sing polar coordinates for velocity space to rewrite
equation (21). i.e..

-2-



u_= I'sino (22)

u_ = I'coso (23)

0_< I;_, 0_<O<2r

Then, equation (21) is transformed into

N(x, Y, t) = V sin ¢g(x, Y, t, I', O)dodV (24)

Since the molecular distribution function, f, is in an ex-
ponential form in nature, it is reasonable to assume that

g(x,y,t) is a function of the exponential type. Then,
equations (24) can be rewritten as

N(x,y,t) = e-V_v"p(V)dV (25)

where

P(V) = f0 2"e+V_Vl-_g(x,y,t,t_,¢)d¢ (26)

Equation (25) can be integrated effectively using
the modified Gauss-Hermite quadrature formula. This

quadrature formula replaces the semi-infinite integral
by a finite number of integration points, called "roots

I/k, k = 1,2,-..n", and transforms equation (25) into

N(x, y, t) = _ WkP(Vk) (27)

k=l

where FI_ is the corresponding weighting factor for root

I/_. For w = 1, n = 16, the root and its weighting factors
are given as

Vx =0.477579953723861E- 01

_ = 0.157564360925804E + 00

_3 = 0.323655656470272E + 00

t) = 0.539147354111002E + 00

__= 0.797005397275377E + 00

t; = 0.109095830650419E + 01

_ = 0.141597596974798E + 01

t'_ = 0.176843702942131E + 01

_; = 0.214614996091144E + 01

_]0 = 0.254836565149444E + 01

t_ = 0.297589659136340E + 01

I]2 = 0.343148386715786E + 01

F)3 = 0.392069411852247E + 01

I]4 = 0.445412057238520E + 01

$]_ = 0.505367426854191E + 01

t]_ = 0.577847884687290E + 01

and

Ill = 0.379530780467479E - 02

tt_ = 0.213680829692996E - 01

_$_ = 0.559585707892949E - 01

tI_ = 0.958716826650700E - 01

I$_ = 0.116908207001337E + 00

_'_ = 0.102936301287559E + 00

F$_ = 0.646824672793000E- 01

I4_ = 0.283191162204620E - 01

Wg= 0.836264802590032E - 02

W10 = 0.159773621113803E - 02

WI_ = 0.187013465916242E - 03

_']2 = 0.124393550561664E- 04

13 = 0.420846696187155E 06

W14 = 0.605184708943963E - 08

W_s = 0.264340659193899E - 10

W_ = 0.152459411718563E - 13

W_ = [_e v_, k = 1, 2, 3,. • .. 16

The root F_ is called the Discrete-Ordinate.

For any selected discrete-ordinate t';_,

Og_ Og_ Og_

O-_ + B k -_q + C _ --_--( = A _ ( G _ - g _ ) (28)

Oh_ B_ Oh_ ___0-7 + _ + C_ = .4_ (H_ - h_) (29)

1

B_: = -_(V_coscx_ - F],sinOy_) (30)

1

C_ = _(t'_ sin0y_ - t'_ cosOx0) (31)

H_: =///u_I o(_, O, u_,O,u:)du: (33)

(k = 1,2.3 .... ,N - 1, N)

In this study, a 16 point discrete-ordinate method is

adopted, N = 16.

Introduce the following dimensionless variables

x y n
.=--

?l 0

u_ uy T

A.d t

gI_)'- h
g= --. b= --



c_ Ct°-_ H : _H
nO 710

where d is the characteristic length of the flow field, the
subscript '0" represents the reference state, and

then, equations (28,29) become

0gk07+ Bk _ + Ck--_-OOk= .4c (d;k - _}k) (34)

0h_ _ 0h_oT+m (35)

A successful numerical scheme for solving equations (34)
and (35) should be fast and reasonably accurate. An

assessment of numerical techniques for solving these

equations concludes that the explicit Runge-Kutta four-

stage time-integration scheme with second order upwind

flux differencing[ 1°] performed very well with regard to

handling the nonlinearity and the convergence speed.

Rewrite equations (34) and (35) into

OQ OE OF

0--7+N+ 5g = s

where Q represents gk and hk in above equations, E is
BkQ, F is CkQ, S represents source terms. The four-

stage Runge-Kutta integration technique is applied to

solve equations (34) and (35). The solution procedure
can be summarized as follows.

For a given discrete-ordinate Vk, equations (34) and

(35) are solved, with 0 < ¢ < 2r, for every points

in the physical space using the designated Runge-Kutta

scheme. A characteristic-based spatial discretization us-

ing second-order upwind flux-differencing is adopted to

discretize the convective terms. The explicit spatial op-
erator may be written in terms of numerical flux vectors

treated on a locally one-dimensional basis. The residue

R(Qi,j) can be written as

R(Qi,j 1 (p(2) _ E(2),j)=S_ _-;+½,i ,-_

1 /-(2) - F (2) a _ -- Si,j
(36)

The superscript,

EI._ _ E_I) 1 -

l+e

F.(2) = F(i/

1+(
+-q-

(2) represents the second-order terms.

(37)

where

E(lt _ 1_(Ei,j + Ei+l,j)
i+},j - 2

1 (IBkli+½,.i(Qi+lo-Qi.))2
1

F I_! (F_,j + F_,_+_),_+½= -_

10Ckli,j+}(Qi,j+l- Qid) )2

AF/,'_+½ = Minmod (A_r/Sj+½,/3A_ri-)_})

.,,<.+ = (A<,+
Air7 .t , =

*+ a,2

A_r++ },j =

A%-_+½=

Acr+j + ½ =

i

5(B_ - IB_I),+½,j (Q_+_,j - Q,,_)

(B_ + IB_l)_+_,y (Q_+_,_ - Q,,j)

(C_ - IC_l),,y÷_ (Q_,j÷_ - Qi,y)

1

(38)

and the Minmod operator is defined by

Minrnod[x, y] = sgn(x)Max (0, Min{Ix_,. y sgn(x)})

(39)

The values of e is chosen based on the type of schemes,
for second-order upwind scheme, e : -1.0. The constant

is a compression parameter which is restricted to the

range 1 _< 3 _< (3- e)/(1 - e) with /3 = 6 when e = 1.

This process repeats for the entire discrete-

ordinates. The nondimensional macroscopic parameters,

such as velocities, temperature, and number density, are

updated using the new values of 0 and h. at each point
in the physical space, based on the Modified Gaussian

quadrature

fi = 14"_g_do

= n [V_ V_ sin ogedo
k=l

1 16 -2r

[>v:n_o= W_ t'_ cos ogkdo

The integration over 0 is obtained by the Simpson's rule.
Currently, 16 points are used in o direction.

Three types of boundary conditions are implemented
for the benchmark solution.

(1). For a given discrete-ordinate I_-. Reservoir Bound-
ary" Condition:

-4-



gk _ --e TO

_To

1ToOkhk =

whererepresents the non-dimensional quantity.

(2). Symmetric Boundary Condition:

Along the nozzle and reservoir centerline, symmetric con-

dition is applied. For a given discrete-ordinate Vk,

_I_=o(_- ¢)= gkl_=o(:),

h_lo=o(_- *) = h_lo=o(¢),

h_1_=0(37 - ¢) - h_l_=0(¢),

(3). Wall Boundary Condition:

In order to specify the interaction between molecules and

the wall surface, diffuse reflection is assumed, i.e. for

a given wall temperature T,,, and discrete-ordinate V_,
molecules which strike the surface are then emitted ac-

cordinf to a Maxwellian distribution,

me r,,, for (17k.ff)>O
7T_

1T,.hk = 5 _g_, for (ff_. ,_) > 0

where, ff is the inward normal vector at the wall surface.

Since the wall number flux hw is unknown a priori, it is

determined by the previous time-step value,

h_=-2(7)½ (ff.ff)_VdCdV, for (17.if)<0.
_-,.,, - .

Repeating above procedures, the time-marching proce-

dure stops when convergent criteria are satisfied for all

the macroscopic parameters. Currently, if the summa-

tion of relative error of density, velocity and temperature
over the entire physical space is less than 10 -5 , the solu-

tions are considered "converged".

RESULTS AND DISCUSSION

Numerical results of low-density nozzle flow was

obtained with the developed BGK-Boltzmann-2D code.

The nozzle is placed between two reservoirs which repre-

sent the upstream boundary condition and downstream

boundary condition near the nozzle exit. The upstream

reservoir pressure and temperature are 0.01 psi and 900

R. The Knudsen number of the Argon gas in the cham-

ber is 0.1, while the Knudsen number increases to 20 at

the nozzle exit. The downstream reservoir pressure is

0.0001 psi. Figure 1 shows the grid setup. Block logic

is implemented in the code so that it has the ability to

calculate flows with complex geometry. A more sophisti-

cated grid network is under development and results will

be addressed in the conference. The pressure ratio be-
tween the two reservoirs is selected to be 100:1 for this

case. The upstream and downstream reservoir tempera-
ture is set at 900 R. The isothermal nozzle wall is set at

temperature of 540 R. The Knudsen number, defined by

the ratio of upstream reservoir mean free path to nozzle

inlet diameter is selected to be 0.1. Figure 2 shows the

velocity vectors inside the nozzle. Figure 3 shows the
Mach number contours inside the nozzle. These conver-

gent solutions were obtained with 8 hours of CPU time
on the CRAY YMP.

More extensive numerical simulations will be per-
formed for the final presentation in the conference. As a

result, a refined analysis of low-density nozzle flow char-
acteristics will be summarized in the conference.
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